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Abstract

used in ovarian cancer therapy.

A diagnosis of advanced ovarian cancer is the beginning of a long and arduous-journey.for & patient. Worldwide,
approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or
consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel,
5-fluorouracil, and doxorubicin are toxic to both cancer and non-canceraus cells,-and nave debilitating side effects
Therefore, development of new targeted anticancer therapies that can‘selectively kili cancer cells while sparing the
surrounding healthy tissues is essential to develop more effective therapies:We have developed a new class of
synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher‘anticancer activity and enhanced
bio-absorption than curcumin. The DAP backbone structure exhibits ¢ytotexic (anticancer) activity, whereas the N-
hydroxypyrroline (-NOH) moiety found on some variants functions.as‘a cellular- or tissue-specific modulator
(antioxidant) of cytotoxicity. The anticancer activity of the DAPS has been evaluated using a number of ovarian
cancer cell lines, and the safety has been evaluated in a number of ‘non-cancerous cell lines. Both variations of the
DAP compounds showed similar levels of cell death in ovarian.cancer cells, however the compounds with the -
NOH modification were less toxic to non-cancerous cells.(Theselective cytotoxicity of the DAP-NOH compounds
suggests that they will be useful as safe and effective anticancel agents. This article reviews some of the key
findings of our work with the DAP compounds,(and-compares this to some of the targeted therapies currently
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Introduction

“Targeted therapy” is a relatively modern term that
is commonly used to describe new drugs’ that are
specifically designed to take advantage of known
molecular pathways involved in the pathophysiology
to be treated. Targeted therapies include small mole-
cules and monoclonal antibodies.”A number of new
small molecules and “immunotherapeutic agents for
cancer treatment are currently it clinical trials or in ad-
vanced developmerit phase. This review will focus on
our research efforts, specifically diarylidienyl piperidone
(DAP) analogs, \in the development of new targeted
agents for the treatment of ovarian and other solid
tumors. We will highlight the selective cytotoxicity of
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these agents toward cancer cells, sparing the surround-
ing healthy tissues. We will discuss the current chal-
lenges of ovarian cancer drug discovery, and finally
identify the potential future of targeted therapy for
ovarian cancer.

New approaches for ovarian cancer therapeutics

Ovarian cancer is the leading cause of death from gyne-
cologic cancer in North American women. In the US
alone 22,280 new cases of ovarian cancer will be diag-
nosed and 15,500 women will die in 2013 [1]. Initial
management consists of aggressive surgical cytoreduc-
tion followed by adjuvant platinum and taxane-based
chemotherapy. Despite initial response in many women,
70-80% will relapse and ultimately die of their disease.
Therapy at the time of relapse is less effective, and re-
current disease is uniformly fatal. Unfortunately, clinical
response to second-line therapy is usually short-lived,
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and women with recurrent disease will die of ovarian
cancer [2-4]. Finding new therapies that can reduce the
rate of recurrence through overcoming resistance is
essential.

With advancing technology and access to biospe-
cimens, the ability to obtain a genetic and molecular
profile of cancers has led to the understanding of cancer
pathways and the development of targeted therapies [5].
The goal of these therapies is to specifically target cancer
cells, while leaving normal tissues unaffected. In many
solid tumors these agents have led to improvements in
both progression-free and overall survival. For example,
in metastatic colorectal cancer, the addition of beva-
cizumab to standard chemotherapy added 8 months to
overall survival with a 30 month improved overall sur-
vival [6,7], unfortunately, the goal of sparing normal tis-
sues has not been fully realized. As more patients are
treated with theses targeted therapies, the adverse events
associated with these agents are becoming better under-
stood. While the traditional toxicities of cytotoxic chemo-
therapy are less common, adverse events such as rash,
gastrointestinal toxicity (diarrhea and bowel perforation)
and pulmonary toxicities are observed.

The poor prognosis associated with ovarian cancer
(given that it is usually diagnosed after metastatic disease
is present) makes it an optimal disease in which targeted
therapies can be developed. The genetic and molecular
profile of epithelial ovarian cancer (EOC) is complex;
making a single molecular target difficult to idemntify. In
EOC, overexpression of VEGF-A has been associated
with advanced disease, poor prognosis, and ascites. for-
mation [8-10]. Given this, bevacizumab has'been’ studied
in both primary and recurrent settings netting an/im-
provement of 4 months in progression “free survival
[11,12]. However, this did not translate te an impro-
vement in overall survival [13]. Poly(ADP-ribose) poly-
merase (PARP) inhibitors were initially’ considered a
potential treatment specifically for-tumors with germline
BRCA mutations due to the inherent defect in homolo-
gous recombination that occurs in BRCA-deficient tu-
mors [14-16]. Trials are ongoirig, testing both of these
promising targeted therapies in patients with ovarian
cancer [17-19]; however,to date no targeted agent has
been shown to‘improve overall survival in ovarian can-
cer nor been granted-FIDA approval. Table 1 reviews
targeted agents of interest in ovarian cancer that have
been evaluated in either Phase II or III trials. Addition-
ally, data regarding disease site of FDA approval, re-
sponse rates, and/common adverse events are reported.

Curcumin-and its anti-cancer property

Curcumin (diferuloylmethane) is a major constituent of
turmeric’ powder, a spice used extensively in Southeast
Asia for centuries. This yellow pigment is extracted
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from the rhizomes of the plant Curcuma longa, and
is recognized for its medicinal properties /jircluding
anti-inflammatory, anti-oxidant, anti-proliferative, anti-
angiogenic, and anti-tumor activities [38-43].- The
anti-carcinogenic properties of curcumin have been
demonstrated in animal models and human studies have
shown the chemo-preventive preperties- of -Curcumin
against breast, prostate, colon, and!lung cancer [44-50].
Curcumin’s anti-neoplastic activity, along with its low mo-
lecular weight and apparent lack of toxicity(use of up to 8
g/day), makes it an ideal foundation for, the development
of new, synthetic chemotherapeutic agents [51].

Problems with solubiiity and bioavailability of curcumin
Despite curcumin’s activity as’an anti-cancer agent with
minimal side effects, it is.notorious for poor bioavailabil-
ity, low solubility in aqueeus solutions, and low potency
[52-55]. The majority-of curcumin is processed by the
gut and wvery little is absorbed into the vascular sys-
tem [56-58]. When administered orally, doses of up to 8
grams per day produce very low serum concentrations
of curcumin, about 1.77 pM [59], limiting curcumin’s
potential as a chemotherapeutic agent. To address this,
some/investigators have attempted to modify the delivery
miethod, /including the use of a nanoparticle-encapsu-
lated form of curcumin (nanocurcumin) [60,61]. An-
other approach to circumvent the limitations presented
by curcumin is the development of synthetic chemical
analogs with enhanced solubility, bioabsorption and po-
tency. We have published several reports on a novel class
of curcumin analogs, diarylidenylpiperidones (DAPs),
which have been synthesized by shortening and incorpor-
ation of a piperidone ring within the beta-diketone back-
bone structure of curcumin and additional fluorination of
the phenyl groups [62]. In this review, we will focus on
two compounds DAP-F(p) and DAP-F(p)NOH which
were synthesized by our group [63].

DAPs have superior bioavailability than curcumin

The DAP compounds, while structurally similar to
curcumin (Figure 1), do not share the limitations of low
bioabsorption and bioavailability. Two DAP compounds,
DAP-F(p)-NOH and DAP-F(p), have been examined
in vitro to determine their bioabsorption [62,64,65].
Bioabsorption of DAP-F(p)-NOH, was compared to
curcumin using UV/Vis and electron paramagnetic re-
sonance (EPR) spectrometry of cell or tissue lysates.
Ovarian cancer cells grown in medium containing 10
uM of DAP-F(p)-NOH, demonstrated absorption of 220
pmol/million cells after 1 hour. In contrast, cells exposed
to 100 pM of curcumin only absorbed about 20 pmol/
million. Additionally, after removal of DAP-F(p)-NOH-
containing culture medium and replacement with stand-
ard media, the EPR active form of DAP-F(p)-NOH was
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Table 1 Selected targeted agents for ovarian cancer evaluated in phase Il studies*
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Targeted
molecular
agents

Primary
molecular
target

FDA approved
cancer sites

Response rate in
ovarian cancer

Toxicities

Imatinib

Trastuzumab

Pertuzumab

Bevacizumab

Gefitinib

Erlotinib

Temsirolimus

Vandetanib

Sorafenib

Sunitinib

Pazopanib

Lapatinib
Olaparib

KIT, PDGF-R (TKI)

HER-2 (MAB)

HER-2 (TKI)

VEGF (mAB)

EGFR (TKI)

EGFR (TKI)

mTOR inhibitor

EGFR, TEGF, RET (TKI)

VEGF, PDGF, c-Raf
(TKI, Raf KI)

VEGF, PDGF, KIT (TKI)

TKI VEGF, PDGFR (TKI)

HER2, EGFR (TKI)
PARP inbibitor

GIST

Breast, gastroeosphageal

Breast cancer

Glioblastoma, NSCLC,
mBreast, mCRC, mRCC

NSCLC

NSCLC

RCC

Medullary thyroid cancer

RCC, hepatocellular
carcinoma

RCC, GIST, pancreatic
neuroendocrine tumor

RCC, soft tissue sarcema

Breast Cancer

n/a

0% ORR, 33% SD [20,21]

7.3% ORR [22]

4.3% ORR, 6.8% SD [23]

15-21% ORR, 25-52% SD [24,25]

0-4% ORR, 29-37% SD [26-28]

6% ORR, 44% SD [29]

9.3% ORR, 24.1% 6mPFS [30]

0% ORR/SD [31]

3% CORR,-34%-SD [32]

31% ORR, 56% SD
{Ca-125 response) [34]

0% ORR, 8 SD [35]

24-41% ORR, 35%-59% SD
(BRCA carriers) [36,37]

Fatigue, diarrhea, rashi, riausea,
cardiotoxicity, granulocytopenia

Fatigue, diarrhea,rash; cardiotoxicity,
anemia, dyspriea, rieutropenia

Diarrhea, neutropenia, nausea,
LV dysfunction, \TE;-vomiting,
renal failure

Fatiaue, diarrhea, anorexia,

fiypertensien, gastrointestinal perforation,
proteinuria, hemorrhage, congestive
heartfaiiure, arterial thromboembolism,
wound healing problems

Diarrhea, rash, nausea, vomiting,
raucositis, dyspnea

Fatigue, diarrhea, rash, anorexia

Fatigue, diarrhea, rash, nausea,
anorexia, stomatitis, anemia,
hypertension, dyspnea

Diarrhea, rash, hypertension, proteinuria,
asymptomatic, QT prolongation

Fatigue, diarrhea, rash, nausea, vomiting,
anorexia, hypothyroidism, cardiotoxicity,
hand-foot syndrome

Fatigue, diarrhea, nausea, vomiting,
hypothyroidism, hypertension,
cardiotoxicity

Fatigue, diarrhea, nausea, anorexia,
hypertension, abdominal pain, arrhythmia,
hepatotoxicity, hemorrhage

QT prolongation, CYP3A4, Gl toxicity

fatigue, somnolence, nausea, loss of
appetite, thrombocytopenia

*There are no FDA approved targeted agents in ovarian-cancer.
Abbreviations: TKI = tyrosine kinase inhibitor, mAB (monocional antbody), mTOR (mammalian target of rapamycin), PARP (Poly ADP-ribose polymerase), GIST

(Gastrointestinal stromal tumor), NSCLC (non-smaill cell lung caricer), CRC (colorectal cancer), RCC (renal cell carcinoma), m

REIST criteria if not specified), SD (stable diseasa).

(metastatic), ORR (overall response rate,

detected in cells for at least-72 hours. However, cur-
cumin was not present.in the ceils-at this time point.
The distribution of DAR-E(p)-NOH in vivo was also ex-
amined using EPR spectrometry of plasma, liver, kidney
and stomach tissue samples of rats exposed to the com-
pound. These samples were collected 3 hours after intra-
peritoneal (IP) injection-of either 10 mg/kg or 25 mg/kg
of DAP-F(p)-NOH:. A measurable EPR spectrum was
found in liver; kidney, blood, and stomach samples, indi-
cating/the presence of DAP-F(p)-NOH in paramagnetic
nitroxide. form. Quantification revealed that the liver
concentration of HO-3867 was twice that of other or-
gans. Furthier, in a murine tumor xenograft model of
ovarian. cancer, animals were given DAP-F(p)-NOH in
feed, and tumor tissue samples were subsequently exa-
mined with EPR. In these samples, an EPR signal was

detected, indicating that oral administration of DAP-F
(p)-NOH is an effective delivery method [62].

Biological activity of DAPs

DAPs incorporate several well-established strategies to
enhance metabolic stability, and increase bioavailability
within the tissues [43,62,66,67]. This, in turn, translates
to increased anticancer efficacy when treating cancer
cells both in vitro and in vivo when compared to cur-
cumin [65,68-70]. We investigated a number of DAP
compounds using biochemical and molecular studies
with the aim of identifying the connections between the
structure and mode of action. Other groups have also
reported upon DAP-type compounds. In 2004, Adams,
et al, reported the synthesis and anticancer/antian-
giogenesis screening of a number of curcumin analog
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Figure 1 Structures of curcumin, EF24 (3,5-bis(2-flurobenzylidene
piperidin-4-one) and DAP compounds are shown. DAP-F(p) and
DAP-CF3(p) are 3,5-diarylidenyl piperidones containing para-fluoro
substitutions on the phenyl groups. DAP-F(p)-NOH and DAP-CF3(p)-
NOH contain an N-hydroxy-pyrroline moiety covalently linked to
the N-terminus of the piperidone ring. (DAP figures reproduced
with permission from Free Radical Biology and Medicine/Elsevier,
reference # 46).

compounds, including DAPs [71]. Subramaniam, et al,
later focused upon one of these compounds, EF24 for an
in vivo study, and reported high anticancer potency/in
colon cancer tumor xenografts [69]. Lagisetty, et al, syrn-
thesized a number of derivatives or similar compounds
to EF24, and conducted structure-activity screenings [72]:
One of these derivatives, CLEFMA, exhibited significantly
higher cancer cell-killing potential than EF24:

DAPs are effective against multiple human cancers

Diphenyl difluoroketone (EF24), an ertho-flourinated
DAD, is toxic to a variety of cancer cells in-vitio [64,66,
73,74]. This has been attributed tc cell-cycle arrest and
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apoptosis in both colon and ovarian cancer ce!l lines
[66,69]. Interestingly, this toxicity was not seen when
mouse embryo fibroblasts were treated witkt EF24, sug-
gesting a component of selective cytotoxicity. This activ-
ity was confirmed in vivo with a xenograft colon cancer
model, showing tumors treated with EE24 were smaller
than control [69]. We have observed that DAP-F-(p), is
more potent than EF24 for inducing cytotexicity in ovar-
ian cancer cells [70]. In our own work, we studied mul-
tiple DAP compounds, and found that they exhibit
similar if not greater, toxicity than cisplatin to multiple
cancer cells lines in vitral However, those compounds
with the -NOH muiety were not toxic to non-cancer
cell lines (Table 2). We. also-cenfirmed these findings
in vivo with an ovarian cancetr) xeongraft model [70]. In
mice treated with 100 ppm DAP-F(p)-NOH, the tumors
size was reduced 70 to '80% compared to untreated. In
addition the! mice did-not show any gross signs of to-
xicity seasured by two profiles; body weight and feed
intake [70].

Metabolic conversion of DAPs in cells

The N-hydroxypyrroline (-NOH) moiety is capable of
andergoing a reversible, one-electron oxidation to its ni-
troxide form, which is paramagnetic and detectable by
EPR spectroscopy. Hence, we determined whether or
not\ DAP-F(p)-NOH is converted its corresponding ni-
troxide form in cells. The EPR spectrum measured from
a 100 pM solution of DAP-F(p)-NOH incubated with
cancer cells showed a characteristic triplet feature attri-
butable to the nitroxide form [64]. This was verified
using a known nitroxide as a control. A five-fold in-
crease in the EPR signal intensity of the nitroxide metab-
olite was observed in cancer cells incubated with DAP-F
(p)-NOH when compared to cells treated with DMSO
alone. Under these conditions, DAP-F(p), which possess

Table 2 Growth-inhibition efficacy data i ovarian cancer cell lines and normal cell lines treated with DAP compounds

compiled from individual MTT assay

Cell lines Cisplatin Curcumin DAP-F (p) DAP-F(p)-NOH DAP-CF3(P) DAP-CF3(P)-NOH
10 pg/ml (%) 100 pM (%) 10 pM (%) 10 pM (%) 10 pM (%) 10 pM (%)

A2780 75-85 65-75 80-90 75-85 80-90 80-90
A2780R* 50-60 55-65 85-90 70-80 75-85 70-80
SKOvV3 80-90 65-75 80-90 75-85 85-90 75-80
OVCAR3 70-80 65-70 75-80 80-85 75-85 70-80
ov-4 75-80 60-65 75-80 70-80 80-85 80-85
PA-1 6575 50 65-75 70-75 75-80 75-80
hOSE ® © ® © ® ©
CHGC ® © ® © ® ©
HoC2 ® © ® © ® ©
HSWC ® © ® © ® ©

Cell viability, cell survival and cell proliferation were quantified as means + SE (N =8, p < 0.05 versus control) and expressed as percentage of respective untreated

controls. ® = Moderately toxic; © = Non-toxic; - = not tested.
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the DAP backbone structures of NOH respectively, but
lacks the pro-nitroxide moiety, did not show any EPR
signal, suggesting that the N-hydroxypyrroline moiety is
the source of the observed EPR signal. The results show
the presence of a significant level of the antioxidant
nitroxide form in the cells tested, and that the metabol-
ite level was significantly higher (25-30%) in noncan-
cerous cells when compared to cancer cells (7-16%).
This difference can be explained by the intracellular en-
vironment of the cancer cells which is characterized by
hypoxia, acidemia, and presence of glutathione. Cancer
cells are more reducing than their normal, non-cancer-
ous, analogues. Since HO-3867 exists in both oxidized
and reduced forms, is particularly susceptible to changes
in the redox state of the cellular environment. Therefore,
HO-3867 undergoes loss of an electron and a greater
shift from the antioxidant to anti-proliferative form in
cancer cells.

Superoxide radical-scavenging activity of DAPs

Many chemotherapeutic agents act by producing free
radicals, which increases the oxidative stress [75,76].
N-hydroxypyrroline-bearing compounds and other nitro-
xides are generally known to have antioxidant properties
including superoxide dismutase- and catalase-mimetic ac-
tivities [77]. The superoxide radical scavenging ability/ of
DAPs was evaluated using a competitive reaction in the
presence of DEPMPO (5-(diethoxyphosphoryl)-5-niethyi-
1-pyrroline-N-oxide), an EPR spin-trap commonly used
for this assay [78,79]. Superoxide radicals were generated
using an aerobic solution of xanthine and xanthine oxi-
dase (X/XO) and detected as DEPMPO-COH adduct by
EPR spectroscopy. The DAP compounds (100‘uM) were
used to compete with 1 mM DEPMPO fer the superoxide
ions. SOD (4.2 pM) was used as a pesitive control. The
EPR studies clearly demonstrated that theN-hydroxypyr-
roline modified DAPs are capable of scavenging super-
oxide radicals.

Selective induction of R2S by DAP<F(r}-NOH

Several studies have shown that/curcumin and curcumin
analogs induce apoptosis and inhibit growth in human
cancer cells [66,73,80-82]. Curcumin is also known for
its antioxidant“properties and ability to act as a free-
radical scavenger. by inhibiting lipid peroxidation and
oxidative DNA damage [83]. Several in vitro studies,
however, suggest-that curcumin analog-induced apop-
tosis is-associated with ROS production and/or oxidative
stress in"cells-[64,73,84,85]. Curcumin also has demon-
strated anticancer activity by decreased mitochondrial
meinbrane potential and induced reactive oxygen species
(ROS). in pancreatic cancer cells [86]. Apoptosis is indu-
ced through an increase in intracellular ROS concentra-
tion through reduction of the mitochondrial membrane
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potential (MMP), alterations in MAPK (Mitogen-acti-
vated protein kinases) expression, and activatiorn of JNK
(Jun-amino-terminal kinase), p38 and ERK (Extracellular
signal-regulated kinases) [87-89]. GSH (Glutathiene) and
NAC (N-acetylcysteine), both antioxidants, have been
shown to block curcumin-induced ROS production and
MMP loss, and rescue cells from curcumir-induced
apoptosis. This suggests that curcumin induces apop-
tosis in cancer cells through a ROS-dependent mito-
chondrial signaling pathway, and alterations in signaling
pathways. In addition, it has bheen .teported that cur-
cumin is a weak stimulator of differentiation and shows
synergistic effects .on/ retineid acid induced differen-
tiation of cancer cells*[89].-The production of ROS
has been linked to the anti-proliferative effects of most
agents [90-92].

We further determined; whether the DAPs could have
a similar effect upon cdncer cells. Cancer cells were in-
cubated with-5or 10 pM of the DAP compounds DAP-F
(p)-NOH,and DAP-F(p) for 12 h, and intracellular ROS
generation-was_ieasured by DCF (dichloroflurescein)
fluorescence [64]. The fluorescence intensity observed in
cancer‘cells was significantly higher in the cells treated
with’ both DAP compounds when compared to untreated
controls.) The DCF fluorescence intensity in human
smeoth”muscle cells (HSMCs) treated with DAP-F(p)-
NOH was not significantly different from that of the un-
treated cells. In contrast, DAP-F(p) induced significant
ROS generation in HSMC cells. The results show that
DAP-F(p) and DAP-F(p)-NOH are comparable in indu-
cing ROS generation in cancer cells. However, in normal
cells (HSMCs), DAP-F(p)-NOH generated significantly
less ROS when compared to DAP-F(p) [64]. Taken to-
gether, the results imply that DAP-F(p)-NOH is capable
of inducing oxidative stress in cancer cells while sparing
healthy cells. These cells are spared because in the normal
cellular environment, unlike the cancer cellular environ-
ment, the equilibrium shift to loss of an electron and an
increase in the anti-oxidant form of the compound.

Efficacy in treating in vivo ovarian carcinoma xenografts

The anti-cancer efficacy of curcumin was first confirmed
in a model of Dalton's lymphoma cells grown as ascites,
and curcumin was found to reduce the development of
animal tumors [93]. Curcumin has been shown to pre-
vent cancer of the skin, colon, stomach, liver, lung, and
breast through oral administration using in vivo rodent
models of these cancers [94-97]. The effects of dietary
curcumin on colon carcinogenesis, in particular, have
been demonstrated in both chemically-induced and
genetically-modified animal models [98]. Furthermore,
curcumin has been shown to be a chemopreventive
agent by inhibiting tumorigenesis during the initiation
phase in chemical models [99]. Based on our in vitro
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results, which showed significant cytotoxicity of DAPs to
human various cancer cell lines, we evaluated the effi-
cacy of DAPs in a human ovarian tumor xenograft
grown on the back of immunocompromised mice. A sig-
nificant reduction in the tumor volume was observed in
a dose-dependent manner [70]. Doses of 50 and 100
parts-per-million (ppm) were effective in reducing tumor
growth when compared to vehicle-treated controls. Tu-
mor weight in untreated animals measured 1.2g com-
pared to 0.6g and 0.2g in the 50 and 100 ppm groups
respectively. This translates to a 70 to 80% reduction of
tumor growth observed in the group treated with 100
ppm of HO-3867. Animals treated through oral adminis-
tration of DAP-F(p)-NOH did not show any gross signs
of toxicity and/or possible adverse side effects as mea-
sured by two parameters: body weight and diet con-
sumption. Many cancer patients exposed to modern
chemotherapeutics experience the undesirable side ef-
fects of a loss of appetite and subsequent weight loss,
often extreme. Our results demonstrated in vivo antitu-
mor efficacy using DAP-F(p)-NOH without any toxicity
complications. The results of our in vitro and in vivo
studies using DAP-F(p)-NOH imply that the induction
of apoptosis may be an additional means by which DAP-
F(p)-NOH inhibits ovarian tumor growth.

Understanding the molecular targets of DAPS in
ovarian cancer

Recent evidence suggests that curcumin analags have a
wide range of molecular targets, which supperts the no-
tion that curcumin analogs influence numerous bic-
logical and molecular cascades [45,100]. Inciuded among
the DAP molecular targets are transcriptien factors,
growth factors and their receptors, and genes regulating
cell proliferation and apoptosis. We have shown that the
DAP compounds target the signal transducer and ac-
tivator of transcription 3 (STAT3) signaling pathways
in various cancer cells when compared to other pro-
oncogenic signaling pathways [64.,70].

Induction of cell-cycie arrest by activation of p53
Cell-cycle control plays a-critical role in the regulation
of tumor cell proliferation. Cell-cycle is tightly controlled
in normal cells by checkpoints and these checkpoints
can become disrupted by damaged DNA [101]. The cell-
cycle consists of four phases (G1, S, G2 and M). p53 is a
nucleat transcription factor that accumulates in response
to cell-cycle arrest and DNA damage [102]. This triggers
transcriptional trans-activation of p53 target genes such
as p21, and p27, leading to cell-cycle arrest, or apoptosis
[103]. Another p53 transcriptional target is the Mdm?2
gene,-whose protein product ubiquitinates p53 and tar-
gets it for proteasome-mediated degradation [102].
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The failure of many chemotherapeutic agents reflects
an inability of these drugs to induce cell- cycle-arrest
and apoptosis [104]. The cell-cycle and programmed cell
death are intimately related, as evidenced by the central
role of p53 in both cell-cycle arrest and/in the induction
of apoptosis. Many cytotoxic agents arrest the cell cycle
at the G1, S, or G2-M phase [105-107]. DAPs induced
G1/G2-M cell cycle arrest in cisplatin-resistant ovarian
cancer cells and serum-stimulated- vascular smooth
muscle cells [66,67]. Previous studies have shown that
the G2-M-phase progression is regulated by a number of
Cdk/cyclins as well as €dk inhibitors such as p21 and p27.
We have observed that the curcumiri analog-induced G2-
M cell-cycle arrest is.mediated by the induction of p53
and p21 and downregulation of cyclin A and Cdk2 [108].
Previous studies also. have shown that the synthetic
curcumin analog, EF24, iniduces G2/M cell-cycle arrest by
means of a redox-dependent mechanism in human breast
cancer-cells and-human prostate cancer cells [73].

Induction of apoptosis

The induction of apoptosis is believed to be the main
mechanism of action for the anticancer effects of flavo-
noids; although other mechanisms have been proposed
[109,110]. Some of these alternatives include cell-cycle
inhibition by inactivation of cyclin-dependent kinase 2
(CDK-2), and attenuation of angiogenesis by inhibition
of vascular endothelial growth factor (VEGF)-induced
phosphatidylinositol-3-kinase (PI3K) activity [111]. Many
curcumin derivatives induce apoptosis in cancer cells,
but the mechanisms by which they do so differ [66,70,
112-114]. The death receptor—associated mechanism has
been recently receiving much attention for the anti-
cancer activity of curcumin derivatives [82,115]. We re-
ported that the death receptor gene Fas/CD95 and FASL
were activated in cancer cells by curcumin analogs
[66,70]. We further observed that the expression level of
TNF-R1, the receptor of tumor necrosis factor-a, was
unchanged in DAPs—treated cancer cells. It has been
reported that curcumin promoted tumor necrosis factor-
a—induced apoptosis in a variety of cancer cells, but
without a significant increase in the TNF-R1 expression
level. Curcumin and curcumin analogues have also been
shown to upregulate death receptor 5 and FasL expres-
sion, thereby inducing apoptosis in human cancer cells
[82,115,116]. Upregulation of the death receptor super-
family—mediated signaling appear to be critical involve-
ment in the stimulation of apoptosis following curcumin
analog exposure.

Several reports have shown that some anticancer agents
induced apoptosis, in part, by blocking the activation of
Akt [117,118]. Akt prevents cells from undergoing apop-
tosis by inhibiting pro-apoptotic factors and suppressing
death-receptor signals such as Fas and FasL [66]. The role



SOURCE: http://lwww.science-truth.com

Rath et al. Journal of Ovarian Research 2013, 6:35
http://www.ovarianresearch.com/content/6/1/35

of Akt signaling in regulating death receptor signaling is
not fully understood. In a recent study using prostate can-
cer cells and T-lymphocytes, blocking Akt-signaling has
been shown to increase caspase-8 activity, resulting ultim-
ately in FasL-dependent apoptosis [119]. It reported that
the curcumin analogs also downregulate Akt signaling
and induces apoptosis [66,120]. Akt activation appears to
be a critical downstream target of the death receptor-
mediated apoptotic pathway, and should provide oppor-
tunities as a target for future anticancer therapeutics.

Targeting STAT3 and PTEN
Signal transducer and activator of transcription 3 (STAT3)
has been implicated in the pathogenesis of a variety of hu-
man malignancies, including head and neck cancer, mye-
loma, prostate cancer, breast cancer, colon cancer, and
ovarian cancer [121]. Activation of STAT3 can be accom-
plished by the Janus kinases (JAKs; including tyrosine kin-
ase 2, TYK2), activated epidermal growth factor receptor
(EGFR), and Src kinase [122-124]. STAT3 is constitutively
activated in many tumor types and this activation pro-
motes acceleration of cell proliferation, upregulation of
survival factors, and activation of anti-apoptotic proteins
[125]. Activated STAT3 imparts cellular resistance to
chemotherapy by inhibiting apoptosis in epithelial malig-
nancies, including ovarian cancer [126-128]. Currently,
the oncogenic transcription factor STAT3 has attracted
much attention as a pharmacologic target, althcugh in
vivo evidence demonstrating that inhibition of (STAT3
could counteract cancer remains incomplete [125].
Curcumin and curcumin analogs induce apoptosis by
inhibiting pSTAT3 Tyr’* and Ser’?” expression in va-
rious cancer cells [65]. Flavonoids” anid other analogs
have been shown to target STAT3 indirectly, by in-
hibiting STAT3-regulating genes such’as the JAK1 and
JAK2 pathways [64,81,130]. We have reported that the
DAPs caused a substantial inhibition-of phospho-JAK1
(Tyr'0%2/1923)  suggesting thatDAPs can inhibit the con-
stitutive activation of STAT3; which) may be caused, at
least in part, by the inhibition of pjAK1 [70]. Further,
evidence showed that DAPs activates cleaved caspase-3
and induces apoptotic-maikers of PARP in various can-
cer cell lines, suggesting that DAPs induce apoptosis in
cancer cells bytargeting STAT3 proteins [64]. Many re-
ports have shown that blockage of constitutive STAT3
activation and signaling results in growth inhibition and
induction of apoptosis in tumor cells both in vitro and
in vive-[131-133]. However, DAP-F(p)-NOH may also
inhibit\ STAT3-activation through JAK2, Src, Erb2, and
epidermal growth factor receptor (EGFR), which are im-
plicatedin STAT3 activation as well. Cisplatin resistance
is—associated with the altered activation of signaling
pathways which include phosphatidylinositol 3-kinase
PI3K/Akt and MAPK, or the suppression of tumor
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suppressor genes, p53 and PTEN [134,135]. The\ tumor
suppressor gene PTEN encodes a multifunctional phos-
phatase that is mutated in a variety of hurman cancers
[136,137]. PTEN is considered to be a central regulator
of cell proliferation and apoptosis [138]; inactivation of
PTEN results in increased Akt activity \in_many)cancers
[135,139,140]. The overexpression ot /PTEN-in/ cancer
cells carrying mutant or deletion-type PTEN can inhibit
cell proliferation and tumorigenicity via induction of cell
cycle arrest at the G1 phase and apoptosis:

Previously, we have reported that the curcumin analog
EF24 downregulated pAkt Ser*”* and Thr*®® through the
upregulation of PTENexpression in cisplatin-resistant
(CR) ovarian cancer’ ceils [66].. Qverexpression of PTEN
showed inhibition?of Akt activation, further supporting
the idea that PTEN upreguiates p53 through the Akt
pathway, and hew-it might'be involved in cell- cycle ar-
rest and apoptosis-in-CR ovarian cancer cells. Further
we shewed that EF24 might inhibit PTEN proteasomal
degradation, leading to the accumulation of polyubiqui-
tinated proteins in the cells. These results suggest that
EF24 may exeit its cytotoxic effect on cancer cells
threugh/inhibition of the pPTEN and PTEN proteasome
degradation [66]. This is consistent with previous stud-
ies, which showed that the turnover of PTEN in cultured
COS-7 cells was dependent mainly on proteasomal deg-
radation [141]. The oncogenic potential of PTEN is fur-
ther highlighted by its roles in integrin signaling and
ability to dephosphorylate FAK that can reduce cell ad-
hesion and enhance migration [142]. Curcumin analogs
which initiate PTEN stabilization may play a role in the
regulation of cell proliferation in cancer and smooth
muscle cells.

Effects on migration/invasion and FAS/FAK pathways

Tumor progression involves complex processes that in-
clude malignant transformation, proliferation, invasion,
and metastasis of cancer cells. Particularly, cancer-cell
invasion and metastasis are the critical processes that
define the aggressive phenotype of human cancers and
pose major impediments to treatment [143,144]. Tumor
cell migration requires the concerted effort of a number
of molecules such as integrins, ion channels, cell ad-
hesion molecules, soluble cytokines and growth factors,
matrix-degrading proteases, and Rho GTPases [143].
The migration process involves the assembly and disas-
sembly of focal adhesions. This process is stimulated ex-
tracellularly and is initiated by integrins and intracellular
signaling proteins located in focal adhesions [145]. Focal
adhesion kinase (FAK), a tyrosine receptor kinase, is ac-
tivated in focal adhesions and is important in cell-extra-
cellular matrix (ECM) interactions that affect cell
migration, proliferation, and survival [145]. DAPs effect-
ively inhibit ovarian cancer cell migration and invasion
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by altering the FASN and FAK expression. Further, it
also exhibits the potential to inhibit vascular endothelial
growth factor (VEGF)-induced invasion and migration
of these cell lines [65].

FASN is overexpressed in ovarian cancer, and overex-
pression has been related with aggressive biologic behav-
ior, suggesting a functional role for fatty acid synthesis
in the growth, survival, and expansion/proliferation of
cancer cells [146]. Recent evidence shows that FASN in-
hibition induces apoptosis, via inactivation of pAKT and
dephosphorylation of Bad in human cancer cells, includ-
ing ovarian cancer cells [147]. DAP-F(p)-NOH targets
FASN, resulting in inhibition of migration and invasion
in ovarian cancer cell lines [65]. A recent report also
showed that suppression of growth and invasiveness of
renal cancer cells by targeting FASN using a synthetic
pharmacological inhibitor [148].

Conclusion & future direction

The diagnosis of an advanced cancer, such as ovarian,
means multi-modality therapy for most patients, which
typically includes chemotherapy. Unfortunately, most che-
motherapy is toxic not only to tumors, but also to healthy
tissue. This adversely impacts quality of life both du-
ring and after therapy. In addition, most ovarian cancer
patients will ultimately recur, and die of their disease:

| ysTaT3 VFAS|), Fak or

i *P‘!‘EN or p53

Cancer cell

Protective to normal

Figure 2 The dual functionality of DAP-F(p)-NOH or DAP-CF3(p)-NOH compounds. The reductive environment of the cancer cells shifts the
equilibiium balance, such that less antioxidant cytoprotection is afforded to cancer cells versus normal cells. The =NOH (N-hydroxy-pyrroline)
moiety undergoes conversion to and exists in equilibrium with the nitroxide (>NO) form (shown in the circle).
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Current cancer research focuses on developing new ther-
apies to both improve survival and decrease toxicity.
Given the anti-cancer properties of curcumin'we have
focused on developing compounds based-that-are not
restricted by poor bioavailability, limited solubility, and
low potency. One of these compounds. DAP-F(p)-NOH
shows promise not only in its toxicity toward cancer cells
through a variety of mechanisms, but also its protection of
healthy tissue. We show that the -NOH moiety provides
an antioxidant protection to healthy celis minimizing
damage to normal tissues in vivo. The cytotoxicity is me-
diated through the STAT3 and FAS/FAK signaling path-
ways (Figure 2).

While much has been learned from the collective work
involving curcumin derivatives)and DAP compounds in
particular, it is clear-that many questions are left un-
answered. In the future,) it/will be critical to expand the
existing knewledge of the mechanism of action of DAP
compounds;-in- particular the other cancer-promoting
pathways on which, it may act. Additional in silico stu-
dies may be conducted to optimize the structure of the
DAP compounds with the intent of maximizing inter-
action ‘with known and future molecular targets. Further
in vivo work is needed with head-to-head comparisons
of DAP compounds against both standard chemothe-
rapies_and targeted agents as progress is made toward

-
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possible clinical trials. Because of the complexity and
variety of cancers found in the modern world, the idea
of a “silver bullet” treatment or cure is unlikely to be
found. However, the continued development of new
therapies such as those described here will lead to im-
proved survival and quality of life for cancer patients.
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