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Curcumin Exerts its Anti-
hypertensive Effect by Down-
regulating the AT1 Receptor in 
Vascular Smooth Muscle Cells
Yonggang Yao1,2,*, Wei Wang1,2,*, Meixiang Li1,2, Hongmei Ren1,2, Caiyu Chen1,2, 
Jialiang Wang1,2, Wei Eric Wang1,2, Jian Yang1,2,3 & Chunyu Zeng1,2

Curcumin exerts beneficial effects on cardiovascular diseases, including hypertension. However, its 
mechanisms are unknown. We propose that curcumin prevents the development of hypertension 
by regulating AT1 receptor (AT1R) expression in arteries. The present study examined how curcumin 
regulates AT1R expression in vascular smooth muscle cells and investigated the physiological 
significance of this regulation in angiotensin (Ang) II-induced hypertension. The results showed that 
curcumin decreased AT1R expression in a concentration- and time-dependent manner in vascular 
smooth muscle cells. Using luciferase reporters with an entire AT1 or a mutant AT1R in A10 cells, 
the AT1R promoter activity was inhibited by 10−6 M curcumin, and the proximal element (from 
−61 to +25 bp) of the AT1R promoter was crucial for curcumin-induced AT1R down-regulation. An 
electrophoretic mobility shift assay showed that curcumin decreased specificity protein 1 (SP1) 
binding with the AT1R promoter in A10 cells. Curcumin treatment reduced Ang II-induced hypertension 
in C57Bl/6J mice, which was accompanied by lower AT1R expression in the arteries and decreased 
Ang II-mediated vasoconstriction in the mesenteric artery. These findings indicate that curcumin 
down-regulates AT1R expression in A10 cells by affecting SP1/AT1R DNA binding, thus reducing AT1R-
mediated vasoconstriction and subsequently prevents the development of hypertension in an Ang  
II-induced hypertensive model.

The renin-angiotensin system (RAS) is one of the most important regulators of arterial blood pressure, and RAS 
activation is related to the pathogenesis of hypertension1. Angiotensin II (Ang II), the principal RAS effector 
peptide, binds to two distinct receptors: the Ang II type-1 receptor (AT1R) and the Ang II type-2 (AT2R) receptor. 
Most Ang II actions are transmitted via AT1R, including vasoconstriction, reduction of vascular compliance, 
cardiac contractility, cellular dedifferentiation and proliferation. Therefore, AT1R antagonists decrease blood pres-
sure in patients with hypertension2,3.

Turmeric (prepared from the root of Curcuma longa) belongs to the ginger family. Curcumin, which is the 
main active constituent of turmeric, exerts anti-oxidant, anti-bacterial, anti-fungal, anti-viral, anti-inflammatory, 
anti-proliferative, pro-apoptotic and anti-atherosclerotic effects. Curcumin has been used in traditional Indian 
medicine for the treatment of many diseases, such as wounds, arthritis, trauma, ulcers, fever and skin diseases, 
over the past 60 years4,5. Furthermore, curcumin exerts beneficial effects on cardiovascular disease, although 
the molecular targets are multiple. Curcumin might regulate DNA polymerase, protein kinase C, lipoxygenase, 
growth factors, transcription factors, inflammatory cytokines, adhesion molecules and apoptosis-related pro-
teins6. Recently, curcumin was reported to prevent the development of hypertension and vascular remodeling 
and to protect against cadmium-induced vascular dysfunction and hypertension7–10. We propose that curcumin 
might prevent the development of hypertension by regulating AT1R in arteries. The present study examined 
how curcumin regulates AT1R expression in A10 cells, a rat thoracic aorta-derived smooth muscle cell line, and 
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investigated the physiological significance of this regulation in Ang II-induced hypertension. The results shows 
that, via affecting specificity protein 1 (SP1)/AT1R DNA binding, curcumin down-regulated AT1R expression in 
A10 cells, reduced AT1R-mediated vasoconstriction, and subsequently prevented the development of hyperten-
sion in an Ang II-induced hypertensive model.

Results
The inhibitory effect of curcumin on AT1R expression at the transcriptional level in A10 
cells.  A10 cells were incubated with curcumin at different concentrations and for different time periods. 
Curcumin decreased the AT1R protein expression in a concentration (10−5–10−9 M, 24 h)- and time (10−6 M, 
2–30 h)-dependent manner. Western blot analysis revealed that curcumin decreased AT1R protein levels sig-
nificantly at 10−8 mol/L compared with the control level, and the reduction reached a maximum at 10−5 mol/L 
(Fig. 1A). Curcumin also down-regulated AT1R protein levels in a time-dependent manner; the reduction 
reached a maximum at 30 h (Fig. 1B). The expression of AT1R mRNA, as determined by RT-PCR, was signifi-
cantly reduced by curcumin (10−6 M) at 24 h compared with the control (Fig. 1C). Therefore, the regulation of 
curcumin on AT1R expression may occur at the transcriptional or post-transcriptional level.

To determine whether the regulation of curcumin on AT1R occurs at the protein degradation level, A10 cells 
were treated with cycloheximide (10−6 M) to block de novo protein synthesis. Cycloheximide had no effect on the 
down-regulation of curcumin on AT1R protein expression (Fig. 2A), which demonstrates that AT1R degradation 
is not involved in the mechanism. We then examined whether curcumin affects the stability of AT1R mRNA. 
Actinomycin D (ActD, 5 μ g/ml), an inhibitor of de novo mRNA synthesis, was used in this study. Actinomycin 
D had no effect on the down-regulation of curcumin on AT1R expression (Fig. 2B). These results indicate that 
curcumin does not regulate AT1R protein expression at the protein or mRNA degradation levels, suggesting that 
curcumin regulates AT1R expression at the transcriptional level.

Role of the transcription factor SP1 in curcumin-induced down-regulation of AT1R expression 
in A10 cells.  To elucidate the molecular mechanism underlying the curcumin-induced down-regulation of 
AT1R gene expression, five AT1R promoter-luciferase DNA constructs were transfected into A10 cells (Fig. 3A). 
The deletion mutants of the AT1R promoter resulted in decreased promoter activity. AT1R promoter activity was 

Figure 1.  The inhibitory effect of curcumin on AT1R protein and mRNA expression in A10 cells. Curcumin 
decreased the AT1R protein expression in a concentration- (for 24 hrs) (A) and time- (at 10−6 M) (B) dependent 
manner. (C) AT1R mRNA expression was also inhibited by curcumin (CUR, 10−6 M/24 hrs) compared with the 
control (C). Cropped gels/blots were used in the figure; the AT1R expression was normalized against β -actin. 
The values are expressed as the mean ±  SEM (*P <  0.05 vs. control, n =  6).
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Figure 2.  Effect of cycloheximide and actinomycin D on curcumin-induced AT1R downregulation. (A) 
The effect of cycloheximide (CHX) on curcumin (CUR)-induced AT1R protein down-regulation was examined 
by Western blot analysis; cropped blots are shown. The AT1R expression level was normalized against β -actin 
(*P <  0.05 vs. control, #P <  0.05 vs. CHX, n =  7). (B) The effect of actinomycin D (ActD) on CUR-induced 
AT1R mRNA down-regulation was examined by RT-PCR analysis. The AT1R expression was normalized against 
β -actin. The values are expressed as the mean ±  SEM (*P <  0.05 vs. control, n =  7).

Figure 3.  Effect of curcumin on AT1R mRNA transcription. (A) Schematic of deletion mutants of the AT1R 
promoter/luciferase fusion DNA construct. (B) The bar graphs indicate luciferase activity normalized against 
β -galactosidase activity derived from the corresponding deletion. The data indicate the luciferase activity of 
curcumin-stimulated A10 cells (white bars) relative to unstimulated (black bars) in each group. The values 
(mean ±  SEM) are expressed as a percent (*P <  0.05 vs. unstimulated, n =  6).
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inhibited by 10−6 M curcumin in all constructs (Fig. 3B), suggesting that curcumin inhibited AT1R expression at 
the transcriptional level and that the proximal element (from − 61 to + 25 bp) of the AT1R promoter was crucial 
for curcumin-induced AT1R down-regulation.

The ubiquitous transcription factor SP1 is important for the regulation of AT1R expression11,12. We detected 
DNA-binding protein bound to the SP1 site using an electrophoretic mobility shift assay (Fig. 4). When nuclear 
extracts from curcumin-stimulated A10 cells (lanes 3) were used, DNA-binding protein (arrow) was decreased 
compared with unstimulated A10 cells (lanes 2). No nuclear extracts and 50 times of unlabeled probe were added 
to the reaction mixture as controls (lanes 1 and 4, respectively), and these controls did not exhibit this band, con-
firming the binding specificity.

Inhibition of AT1R expression by Curcumin and its function in arteries from Ang II-induced 
hypertensive C57Bl/6J mice.  To investigate the physiological significance of the regulation of curcumin 
on AT1R expression, we established an Ang II-induced hypertension model in C57Bl/6J mice. Eight-week-old 
mice (weight 20 g ±  0.89) were divided into three groups: control, Ang II (490 ng/min/kg), and Ang II (490 ng/
min/kg) +  curcumin (300 mg/kg/d). Ang II was administered subcutaneously via an osmotic minipump (Model 
1004, ALZET Osmotic Pumps, CA) for one week. Curcumin was suspended in normal saline, and the mice were 
given the suspension by oral gavage once per day; normal saline was used as a control. After one week, the blood 
pressure and heart rate were measured using the tail-cuff method. The blood pressures of the Ang II-treated mice 
(SBP: 150 ±  6.24 mmHg, DBP: 86 ±  17.61 mmHg) were significantly higher than the Ang II +  curcumin group 
(SBP: 91 ±  7.55 mmHg, DBP: 47 ±  2.64 mmHg) (Fig. 5A). However, the heart rate was not significantly different 
between the individual groups (Fig. 5B).

To determine how curcumin exerts its function in Ang II-related hypertension, we studied AT1R function in 
third-order mesenteric arteries from the mice of the Ang II and Ang II +  curcumin groups. Isolated mesenteric 
arteries from normal C57Bl/6J mice were used to measure the contractile responses to different concentrations 
of phenylephrine and KCl and the relaxant response to acetylcholine (Ach). The effect of curcumin (10−6 M) 
alone on mesenteric arteries was compared. The mesenteric arteries were incubated with curcumin for 60 min 
before starting the experiment. The changes in contractile and relaxant responses to phenylephrine, KCl and 
Ach were also measured. Our results showed that curcumin slightly decreased the contractile response of aortic 
rings to phenylephrine and KCl (Supplemental Fig. 1A), whereas it did not affect the relaxant response to Ach 
(Supplemental Fig. 1B). We found that Ang II (10−9–10−5 M) induced concentration-dependent vasoconstriction 
in the third-order mesenteric arteries from the mice; the vasoconstrictive effect of Ang II was lowered signifi-
cantly by curcumin (Fig. 5C). Further experiments were performed to examine AT1R expression in the arteries, 
and curcumin reduced the increased AT1R protein levels in the aortas of Ang II-induced hypertensive C57Bl/6J 
mice (Fig. 5D).

Discussion
Previous studies have demonstrated that curcumin possesses strong antioxidant and cardioprotective properties. 
Therefore, curcumin is considered to be a new therapeutic candidate for cardiovascular diseases, including idio-
pathic pulmonary arterial hypertension, glomerular hypertension and L-NAME-induced hypertension7–10,13,14. 

Figure 4.  Effect of curcumin on the binding ability of SP1 at the AT1R gene promoter in A10 cells. The 
binding activity of the AT1R gene promoter (− 40 bp to − 6 bp), which contains an Sp1 site, was examined 
in the nuclear protein from unstimulated (lane 2) or curcumin (10−6 M)-stimulated (lane 3) A10 cells by 
electrophoretic mobility shift assay; DNA-binding protein (arrow) was decreased compared with unstimulated 
A10 cells. No nuclear extracts or 50 times of unlabeled probe were added to the reaction mixture as controls 
(lanes 1 and 4, respectively).

SOURCE: http://www.science-truth.com

www.sc
ien

ce
-tr

uth
.co

m



www.nature.com/scientificreports/

5Scientific Reports | 6:25579 | DOI: 10.1038/srep25579

However, the role of curcumin in hypertension and its associated complications remains unknown. In this study, 
we determined that curcumin suppressed AT1R expression in in vitro and in vivo experiments. To our knowledge, 
this is the first report demonstrating the down-regulation of vascular AT1R by curcumin.

The beneficial effects of curcumin on L-NAME-induced vascular dysfunction are associated with increased 
eNOS protein expression, reduced oxidative stress, and replenished antioxidant glutathione with partial resto-
ration of normal redox status7. As one of the major regulatory factors of blood pressure, we were interested 
in whether curcumin regulated AT1R expression. Our present study showed that curcumin lowers the blood 
pressure in Ang II-induced hypertensive C57Bl/6J mice, and this anti-hypertensive effect is partially attributed 
to the inhibition of AT1R expression in arteries. Moreover, curcumin-regulated AT1R expression in the arteries 
is of physiological significance because the Ang II-mediated vasoconstrictive effect is lower in Ang II-induced 
hypertensive C57Bl/6J mice after treatment with curcumin. The anti-oxidative effect of curcumin has been shown 
in hypertensive rats7,10,15,16; increased ROS increases AT1R expression in the kidney17–19. However, whether ROS 
is involved in the regulation of curcumin on arterial AT1R expression remains unknown and needs to be deter-
mined in the future.

The underlying mechanisms regulating AT1R expression are complicated and might involve several levels, 
including transcriptional and post-transcriptional levels13,17,20,21. To determine whether the regulation occurs at 
the post-transcriptional or post-translational levels, we treated cells with cycloheximide to block de novo protein 
synthesis or actinomycin D to block de novo mRNA synthesis; cycloheximide and actinomycin D had no effect on 
the regulation of curcumin on AT1R expression in A10 cells, which demonstrated that the regulation of curcumin 
on AT1R protein expression did not occur at the protein or mRNA degradation levels and that the regulation of 
curcumin on AT1R expression occurs at the transcriptional level. The deletion mutant analysis of the AT1R gene 
promoter (from − 980 bp to + 25 bp) revealed that the inhibition of AT1R expression by curcumin depends on the 
most proximal promoter region (from − 61 bp to + 25 bp), which contains an SP1 binding site (GC box). A gel 
shift assay showed that DNA-binding protein bound to the SP1 site was decreased in curcumin-stimulated A10 
cells, indicating a crucial role of the SP1 site in curcumin-induced AT1R down-regulation.

This study demonstrated that curcumin suppressed AT1R protein expression by inhibiting SP1 activity. The 
ability of curcumin to inhibit AT1R expression might be of clinical significance. Whether or not there is a syner-
gistic or additional effect between curcumin and other anti-hypertensive medicines, including ARBs and ACE 
inhibitors, needs to be identified in the future.

Figure 5.  Effect of curcumin on AT1R expression and function in arteries from Ang II-induced 
hypertensive C57Bl/6J mice. The blood pressure (A) and heart rate (B) were examined in Ang II-induced 
hypertensive C57Bl/6J mice with or without curcumin treatment (*P <  0.05 vs. control, n =  5). The Ang II-
mediated vasoconstriction in the third-order mesenteric arteries (B) and the AT1R expression in the aorta (D) 
were examined in these mice (*P <  0.05 vs. others, n =  7). Cropped blots were used in this figure; the AT1R 
expression was normalized against β -actin. The values are expressed as the mean ±  SEM (*P <  0.05 vs. control 
group, #P <  0.05 vs. Ang II group, n =  7).
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Methods
Materials.  The rabbit polyclonal AT1R antibody was purchased from Santa Cruz Biotechnology (sc-1173, 
Dallas, TX). Curcumin was obtained from Sigma (c7727, St. Louis, MO); Ang II was purchased from Calbiochem 
(4474-91-3, San Diego, CA); Dulbecco’s modified eagle medium (DMEM, Ca# 11995065,) and fetal bovine serum 
(FBS, Ca# 16000044) were obtained from Life Technologies (Carlsbad, CA). All other chemicals for various buff-
ers were of the highest purity available and were purchased from Sigma or Gibco (Grand Island, NY).

Cell Culture.  Embryonic thoracic aortic smooth muscle cells (passage 10–20) from normotensive 
Berlin-Druckrey IX22 (A10; American Type Culture Collection, Manassas, VA) were cultured in DMEM supple-
mented with 10% FBS at 37 °C in a 95% air-5% CO2 atmosphere and were used for the experiments.

Western Blot Analysis.  The expression of AT1R was detected by Western blot analysis, as described previ-
ously23. The specific band was scanned with an imaging analyzer, and β -actin was used as a loading control. The 
expression level of AT1R was indicated as a ratio of AT1R to β -actin.

RT-PCR for AT1R.  A total of 2 μ g of total RNA extracted from A10 cells was used to synthesize cDNA and 
served as a template for the amplification of AT1R and β -actin, which served as the house-keeping gene con-
trol. The AT1R mRNA expression levels were normalized to β -actin mRNA. The primers for β -actin included 
forward primer 5′ -CCACTGCCGCATCCTCTT-3′  and reverse primer 5′ -GTCAGCAATGCCTGGGTA-3′  
(GenBank accession No. NM_031144, 251 bp). The primers for AT1R included forward primer 
5′ -AAATTGAGTGGCTGTATG-3′  and reverse primer 5′ -CTTGACCTCCCATCTCCT-3′  (GenBank accession 
No. NM_031009, 160 bp).

Transfection of AT1R Promoter-Luciferase Fusion DNA Construct into VSMCs.  Five deletion 
mutants of the rat AT1R gene promoter region were ligated to the luciferase gene, as described previously24. A10 
cells were prepared in a 6-cm tissue culture dish. After 48 hours, 5 μ g of the AT1R promoter luciferase fusion DNA 
construct and 2 μ g of the LacZ gene driven by the SV40 promoter-enhancer sequence were transfected into the 
A10 cells. In addition to the AT1R promoter luciferase fusion DNA construct (980 bp, 2 μ g) and the LacZ gene 
(2 μ g), vector plasmid (3 μ g) was introduced concomitantly into the A10 cells. These cells were stimulated with 
10−6 M25–27 curcumin and cultured in DMEM with 10% FBS for 48 hours. The luciferase activity was then meas-
ured and normalized against the β -galactosidase activity.

Preparation of Nuclear Extracts and Electrophoretic Mobility Shift Assay.  An EMSA was per-
formed with a Light-shift Chemiluminescent EMSA Kit (Ca# 20158, Thermo Fisher Scientific, Waltham, 
MA) according to the manufacturer’s recommendations28. Using a non-isotopic method to detect DNA–
protein interactions, this system includes an enhanced luminol substrate for horseradish peroxidase with 
optimized blocking and washing buffers that produce sensitivity equivalent to radioactive (32P) systems. 
A synthetic DNA double-stranded oligonucleotide probe containing the sequence of the rat AT1R gene pro-
moter between nucleotides − 40 and − 6 bp (5′ -GGAACCTGCAGAGCAGCGA CGCCCCCTAGGCT ATA-3′ , 
3′ -CCTTGGACGTCTCGTCGCTGCGGGGGATCCGATAT-5′ , both of which contain an Sp1 site) was labeled 
with biotin and incubated with the nuclear extracts. After the reaction, the DNA–protein complexes were sub-
jected to 6% native polyacrylamide gel electrophoresis and transferred onto a nylon membrane (Millipore Corp. 
Lincoln Park, NJ). After transfer, the membrane was immediately cross-linked for 15 min on a UV transillumi-
nator. A chemiluminescent detection method using a luminal/enhancer solution and stable peroxide solution 
(Thermo Fisher Scientific, Waltham, MA) was used, as described by the manufacturer, and the membranes were 
exposed to X-ray films for 30 s to 5 min before development.

Animal Experiment.  Eight-week-old C57Bl/6J mice, weighing approximately 20 g, were purchased from the 
Laboratory Animal Center of Daping Hospital of the Third Military Medical University. The mice were divided 
into the following experimental groups: control, Ang II (490 ng/min/kg), and Ang II (490 ng/min/kg) +  cur-
cumin (300 mg/kg/d). Curcumin was suspended in normal saline, and the mice were administered the suspen-
sion by oral gavage once per day for one week. The estimated dose of curcumin was 300 mg/kg/d29,30. In the Ang 
II group, 490 ng/min/kg of Ang II was administered subcutaneously via an osmotic minipump (Model 1004, 
ALZET Osmotic Pumps, CA). After one week, the blood pressure and heart rate were measured using the tail-cuff 
method (UR-5000, UEDA, Japan); the mice were then sacrificed under pentobarbital anesthesia (60 mg/kg). The 
thoracic aorta was removed quickly, minced into small pieces, lysed in a lysis buffer, sonicated, placed on ice for 
1 h and centrifuged at 15000 rpm for 30 min at 4 °C. The supernatants were stored at − 70 °C until being subjected 
to Western blot analysis for AT1R and β -actin.

All study procedures were approved by the Third Military Medical University Animal Use and Care 
Committee. All experiments conformed to the guidelines of the ethical use of animals, and all efforts were made 
to minimize animal suffering and to reduce the number of animals used.

Mesenteric Artery Study.  Each mouse was anesthetized with pentobarbital. The total mesenteric bed 
was removed carefully and placed in an ice-cold physiological salt solution (PSS, containing NaCl 119 mM, KCl 
4.7 mM, CaCl2·H2O 2.5 mM, MgSO4·H2O 1.17 mM, NaH2CO3 25 mM, KH2PO4 1.18 mM, EDTA 0.027 mM, 
and glucose 5.5 mM, adjusted to pH 7.4). The surrounding fat and connective tissues of the mesenteric artery 
were carefully and quickly dissected. Third-order branches of the superior mesenteric artery were cut into 
rings approximately 2 mm in length and mounted on 25 μ m tungsten wires in an isometric Mulvany-Halpern 
small-vessel myograph (model 91 M610, J.P. Trading, Science Park, Aarhus, Denmark). The rings were main-
tained in ice-cold PSS at 37 °C and continuously bubbled with oxygen (95%) and carbon dioxide (5%) (Carbogen). 
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All procedures were performed carefully to protect the endothelium from any damage. In the first set of experi-
ments, the rings were contracted with high-potassium PSS (KPSS, 70 mM) to obtain the maximal response31,32. 
After obtaining the maximal response to KPSS, the response curves to Ang II were measured by a cumulative 
concentration-dependent protocol (10−9 to 10−5 M). To test the curcumin-induced inhibition of vasoconstriction, 
the mice were administered curcumin by oral gavage once per day for 1 week before the Ang II treatment.

Statistical Analysis.  Statistical analysis was performed with performed 1- or 2-way ANOVA and Fisher’s 
test, if appropriate. The data are shown as the mean ±  SEM. A value of P <  0.05 was considered significant.
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